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Transcription factor binding sites (TFBSs) are essential for gene
regulation, but the number of known TFBSs remains limited. We
aimed to discover and characterize unknown TFBSs by developing
a computational pipeline for analyzing ChIP-seq (chromatin immu-
noprecipitation followed by sequencing) data. Applying it to the
latest ENCODE ChIP-seq data for human and mouse, we found that
using the irreproducible discovery rate as a quality-control crite-
rion resulted in many experiments being unnecessarily discarded.
By contrast, the number of motif occurrences in ChIP-seq peak re-
gions provides a highly effective criterion, which is reliable even if
supported by only one experimental replicate. In total, we obtained
2,058 motifs from 1,089 experiments for 354 human TFs and 163
motifs from 101 experiments for 34mouse TFs. Among thesemotifs,
487 have not previously been reported. Mapping the canonical mo-
tifs to the human genome reveals a high TFBS density ±2 kb around
transcription start sites (TSSs) with a peak at −50 bp. On average, a
promoter contains 5.7 TFBSs. However, 70% of TFBSs are in introns
(41%) and intergenic regions (29%), whereas only 12% are in pro-
moters (−1 kb to +100 bp from TSSs). Notably, some TFs (e.g., CTCF,
JUN, JUNB, and NFE2) have motifs enriched in intergenic regions,
including enhancers. We inferred 142 cobinding TF pairs and 186
(including 115 completely) tethered binding TF pairs, indicating fre-
quent interactions between TFs and a higher frequency of tethered
binding than cobinding. This study provides a large number of pre-
viously undocumented motifs and insights into the biological and
genomic features of TFBSs.

ChIP-seq | transcription factor | binding site | promoter |
position weight matrix

Transcription factor binding sites (TFBSs) are a central ele-
ment of gene regulation. The collection of TFBSs bound by a

TF is commonly represented by a position weight matrix (PWM)
describing the relative likelihood of observing a given nucleotide
at each position of the TFBS. Once determined, the PWM of a
TF can be used to predict its target genes and the biological
pathway(s) it affects, which together define the TF’s function.
The importance of TFBSs is reflected by the many techniques

that have been developed for their identification, including
chromatin immunoprecipitation followed by sequencing (ChIP-seq)
(1, 2), protein-binding microarray (3), systematic evolution of li-
gands by exponential enrichment (SELEX) (4), and DNA affinity
purification sequencing (5). The availability of so many techniques
notwithstanding, accurate determination of TFBSs is still not simple
and “known” PWMs are still limited in number (6) and follow
variable quality standards (7).
The preferred method for determining TFBSs has been ChIP-

seq, an in vivo technique that can be used for genome-wide map-
ping of TFBSs and epigenetic marks. For humans, the ENCODE
project has produced 1,621 “released” status experiments (accessed
5 October 2019) (8), representing the largest quantity of uniformly
processed ChIP-seq data currently available. However, fewer than
half of these experiments have previously been analyzed to infer

PWMs, as a substantial volume of new ENCODE ChIP-seq data
has accumulated since previous systematic analyses (9, 10). The
present study analyzed all the currently available ENCODE human
and mouse ChIP-seq data.
For the above purpose, we developed a computational pipeline

that separately and simultaneously utilizes all available experiments
and biosamples to infer PWMs for each TF studied (https://github.
com/chpngyu/chip-seq-pipeline). As a resource for future research,
our results are presented in a freely accessible database (dbTFBS:
https://dbtfbs.cistro.me/), which also displays comparisons to PWMs
available in other databases. After inferring PWMs, we mapped
PWMs to the human genome to address questions such as the
positional distribution of TFBSs in the human genome, the po-
tential regulators of specific genes, and the clustering of TFBSs in
promoters. Moreover, we addressed the issue of cooccurring motifs
from different TF families within the same ChIP-seq data (6, 9).
Our study provides not only many previously unreported motifs but
also abundant data on the biological features of human TFBSs.

Results
Inferred PWMs in Human and Mouse. Our analysis of the ChIP-seq
data was divided into two stages: 1) analysis using a set of
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stringent rules and 2) recovery of data discarded in the first stage
using a modified rule set (Fig. 1A). In the first stage, we re-
stricted our analysis to ChIP-seq experiments having two or more
replicates with an irreproducible discovery rate (IDR) (11, 12)
score ≥1.3 [−log10(0.05) = 1.3; https://github.com/IDR/idr-py]
and to replicates containing at least one PWM having both
E <0.0001 and occurrences in >100 of the top 500 peaks (see
Methods). For a TF with a single experiment, the replicates
passing these two criteria were merged to infer PWMs. For a TF
with multiple experiments, we used a nonparametric method to
rank peaks from all experiments and selected the top 500 peaks
to infer PWMs (Methods). After inferring the PWMs for a TF,
we chose up to five PWMs that were supported by >100 peaks.
We considered the PWM supported by the largest number of
peaks to be the top (primary) PWM and the remaining to be
secondary PWMs.

For human TFs, there were 1,621 ChIP-seq experiments in
“released” status in the ENCODE project (accessed 5 October
2019). All experiments were analyzed except for CTCF, for
which 129 of 311 experiments were sampled. A total of 1,439
experiments for 502 TFs in 49 TF families were analyzed, from
which we obtained 1,829 PWMs for 346 TFs in 45 TF families
from the 981 experiments (Dataset S1).
As an example of our method, Fig. 1 shows our analysis of

JUND (JunD proto-oncogene), a TF in the bZIP family. Fig. 1B
shows the top five PWMs obtained from a JUND experiment
using liver tissue (accession ENCSR837GTK). Among the top
five PWMs in the top 500 peak regions, only one has >100 peaks
(“Motif 1”). This PWM is found in >80% of the top 500 peaks,
but in only 50% of the top 4,000 peaks (Fig. 1C), affirming the
advantage of using only top-scoring peaks for inferring PWMs.
As each of the remaining four PWMs is found in <100 of the top

A

B

C

D

Fig. 1. Computational pipeline and method for selecting the top PWMs of a TF from individual experiments and the top PWM across multiple experiments,
using JUND as an example. (A) Flowchart of the computational pipeline. The detailed criteria and parameters are given in Methods and SI Appendix, Fig. S1.
(B) The top five PWMs from one experiment (liver tissue; accession ENCSR837GTK). The numbers of occurrences of each PWM in the top 500 peak regions are
indicated on the right; one PWM (motif 1; top) has >100 occurrences. (C) Cumulative proportion of called peaks containing each of the top five PWMs. The
ranked peaks are sorted by MACS2 score, with ranks closer to 1 corresponding to higher scores (x axis). For each PWM, the fraction of peaks (y axis) was
calculated as the occurrence of a motif (FIMO P < 0.0001) in the top N peaks (x axis). The dashed vertical line denotes the peak with rank 500, with peaks to
the left of the line used to infer PWMs (top 500 peaks). (D) The top PWM obtained from all 10 JUND biosamples is used as the reference for comparison with
the top PWM of each individual biosample, each of which could contain one or more experiments. The PWM from a biosample with multiple experiments is
indicated by an asterisk (*). For each PWM logo, positions with information content (IC) <0.3 bits were trimmed from both ends.
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500 peaks (Fig. 1C), none of them is considered a PWM of
JUND. In Fig. 1D, the first PWM (“Top”) is the top PWM
obtained by analyzing the data from all passing JUND experi-
ments (15 of 17) across 10 biosamples. The remaining PWMs are
those obtained from each of the 10 individual biosamples. Sim-
ilarity between two PWMs is measured by the k-mer frequency
cosine angle (hereafter “cos”) between two PWMs, which is sim-
ilar to the Pearson correlation coefficient (PCC) (see Methods).
Eight of the 10 top PWMs from individual biosamples are highly
similar to the top PWM among all samples, with cos ≥0.80. These
eight PWMs all have a core motif sequence with the palindrome
TGA[C/G]TCA. The two PWMs with cos < 0.80 are inferred from
the GM12878 and H1 cell lines and show different binding spec-
ificities in the core sequence or flanking regions.
For the mouse, the ENCODE project included 193 experi-

ments for 54 TFs in 14 TF families. We obtained 158 PWMs for
30 TFs in 12 TF families from 97 experiments (Dataset S2).
In the second stage of analysis, we tried to recover discarded

data (Methods). We recovered each experiment that had at least
one replicate with at least one PWM supported by >250 of the
top 500 peaks. In this analysis, if merging increased the number
of peaks supporting the top PWM, replicates of an experiment
were merged irrespective of their IDR score. Otherwise, the
replicate with the PWM supported by the largest number of
peaks was selected to infer PWMs (Methods). In this effort, we
recovered 108 experiments and obtained 229 additional PWMs
for 56 human TFs (https://dbtfbs.cistro.me/?jump=Total) and 4
experiments and 5 additional PWMs for 4 mouse TFs (https://
dbtfbs.cistro.me/?pwd=db-mmu&jump=Total). The recovered
experiments are indicated as “Recovered” in the “Notes” column
in our database.
Putting together the PWMs inferred from the two stages, we

obtained a total of 2,058 PWMs for 354 human TFs and a total of
163 PWMs for 34 mouse TFs.

C2H2 TFs. Because C2H2 binding sites are often dominated by
endogenous retroelements, we also conducted an RCADE anal-
ysis, as recommended by Najafabadi et al. (13) (seeMethods). Our
MEME-ChIP analysis yielded at least one PWM for each of 166
C2H2 TFs. Our RCADE analysis yielded 87 PWMs that are
similar to the PWMs obtained fromMEME-ChIP analysis: 5 cases
with cos = 0.76, 0.77, 0.78, 0.78, and 0.79, respectively, with the
remaining 82 cases having cos > 0.8 (https://dbtfbs.cistro.me/?
jump=C2H2_ZF). The RCADE analysis failed to yield any ac-
ceptable PWM for 55 C2H2 TFs, which are indicated as “No re-
sults” in our database. The remaining 24 C2H2 TFs having PWMs
from MEME-ChIP analysis exhibited cos <0.75 with the PWMs
obtained from RCADE analysis. Thus, in 79 cases, RCADE failed
to provide support for the PWMs obtained from MEME-ChIP
analysis. These PWMs should be taken with caution (indicated
as “uncertain” in our database). However, more than half of the
cases yielded similar PWMs using MEME-ChIP (87) and RCADE
(79), possibly because our analysis excluded Blacklist (repetitive)
regions, which may have excluded most endogenous retroelements.
For the mouse, we obtained PWMs for five C2H2 TFs by

MEME-ChIP and by RCADE, and in every case the PWMs
obtained by the two methods are highly correlated (cos = 0.92).

Canonical Motifs and Cooccurring Motifs. The canonical motif of a
TF refers to the sequence-specific DNA motif that is directly
bound by the TF. Cooccurrence can be inferred when a motif
found in the ChIP-seq data of one TF (TF1) is similar (cos ≥
0.80) to the canonical motif of a second TF (TF2) from another
family. We have developed a set of rules for classifying the
PWMs inferred from an experiment as “canonical,” “candidate
canonical,” “cooccurring,” or “unannotated” (see Methods).
Briefly, a PWM is classified as canonical if it is similar (cos ≥
0.80) to a known canonical PWM of a TF in the same TF family,

while it is classified as cooccurring if it is similar to a known
canonical PWM of a TF that belongs to another family. If the top
PWM is not similar to any known canonical PWM in any data-
base or literature, it is likely a previously uncharacterized ca-
nonical PWM; however, we call it “candidate canonical” because
it might be similar to an unknown motif of another TF. A sec-
ondary PWM is classified as “unannotated” if it is not similar to
any known PWM.
In total, we inferred 776 canonical, 113 candidate canonical,

455 cooccurring, and 374 unannotated PWMs for the 308 human
TFs studied (Dataset S1). The number of canonical PWMs was
larger than the number of TFs studied because different exper-
iments for a TF often gave somewhat different PWMs. For a TF
with multiple experiments, we assigned the top PWM obtained
by our ranking method utilizing all experiments (Methods) as the
canonical PWM. We also inferred 95 canonical, 40 cooccurring,
and 40 unannotated PWMs for the 34 mouse TFs studied.

Unannotated Motifs. We found 487 human PWMs that have not
been annotated before (Dataset S1), likely representing novel
PWMs. Among these PWMs, 113 are primary PWMs and so are
likely canonical. However, we classify them as “candidate ca-
nonical” because such a motif may be the canonical motif of
another TF (e.g., an uncharacterized TF). For these candidate
canonical motifs, we examined their 1) enrichment in promoters
and/or enhancers and 2) evolutionary conservation during pri-
mate evolution (Methods). We required candidates to pass two
tests: 1) twofold or greater enrichment in promoters or ≥1.5-fold
enrichment in enhancers and 2) twofold or greater increase in
conservation score as compared to intergenic regions. For in-
stance, we inferred a novel candidate canonical PWM of ZBED5
in the BED ZF family that has a fivefold higher probability of
being found in promoters and twofold higher conservation score
as compared to intergenic regions (SI Appendix, Fig. S2). Over-
all, 61 (54%) of these 113 PWMs passed the two tests, providing
evidence that they represent bona fide motifs.
The remaining 374 PWMs are secondary PWMs. Among them,

242 motifs were found in experiments with a successfully identified
canonical motif. Thus, they are likely cooccurring motifs bound by
unknown TFs. We conducted the above two tests (enrichment and
conservation) on each of these PWMs and found that 132 (55%)
of them passed the tests. The remaining 132 unannotated motifs
cooccurred with noncanonical primary motifs, so that they them-
selves might be canonical. We found that 56 (42%) of these
PWMs passed the above two tests and are likely functional motifs
(Dataset S3).
To find support for the inferred novel motifs, we checked

newly released ENCODE ChIP-seq data (released in July 2020
or later) from cell lines not used before. For 31 TFs with novel
PWMs, we found 32 experiments (one TF with two experiments)
from the newly released data. We could infer PWMs for 23 of the
31 TFs (Dataset S4). Among the 23 PWMs, 11 were similar (cos
> 0.8) to the inferred novel PWMs and another had cos = 0.75,
and these (11 + 1) PWMs were each supported by a large
number of peaks (325 on average). Thus, these PWMs are likely
functional. The remaining 11 TFs had a cos < 0.6 and the PWMs
were supported by a lower number of peaks (∼200 on average).
These 11 PWMs may not be functional and should be taken
with caution.

Cooccurrence of Motifs from Different TF Families. Motifs from
different TF families may cooccur in the same ChIP-seq data.
Cooccurrence may result from two situations, where TF1 is the
TF being assayed and TF2 belongs to a different family (9): 1)
cobinding, in which the two TFs (TF1 and TF2) tend to bind
neighboring sites, and 2) tethered binding, in which TF1 binds to
TF2 which, in turn, binds directly to DNA. Cobinding is inferred
when the primary motif of TF1 is equally or more frequent than
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that of TF2, indicating that each TF can bind separate DNA
motifs (9). Cobinding is also inferred if the motif of TF2 is less
frequent than the joint occurrence of the two motifs in the same
peak regions (Methods). Tethered binding is inferred if the motif
of TF2 is the primary motif, that is, it is more frequently found
than that of TF1. The mathematical expressions for these criteria
are presented in Methods.
Using the above rules and the known and inferred canonical

motifs of TFs, we found 142 TF pairs that showed cobinding in
one or more cell lines (Fig. 2 and Dataset S5). For example,
USF2 (bHLH) tends to cobind with NFYA/C (an unknown TF)
with consensus CCAAT and SP1/2 or MAZ with consensus
GGG[C/A]GGG. Moreover, 186 TF pairs were identified as
participating in tethered binding. Among the tethered binders,
130 TF pairs were completely tethered, showing only the non-
canonical motif. For example, TCF12 was studied in eight cell
lines, five of which were completely tethered by GATA, JUN, or
FOXA1. In our data, FOXA1 showed cooccurrence with the
largest number of TFs, including cobinding with 23 TFs and
tethered binding with 15 TFs.
We found that CTCF has a canonical motif with the consensus

sequence rsyGCCmyCTrsTGGyCr (r = A or G; s = G or C; y =
C or T; m = A or C) and another motif with the consensus
GGAACTGCAG that was only found in certain cell lines cooc-
curring with the canonical motif. Recently, Vierstra et al. (14) found
that CTCF has a canonical and a secondary motif that is similar to
the first motif above. It is noted that CTCF has multiple DNA-
binding domains (DBDs), which could potentially bind to multiple
motifs, as this example suggests. In such cases, a second motif may
be mistaken as a cooccurring motif bound by an unknown TF.
Because the novel PWMs are dissimilar to known canonical

PWMs and a TF may have secondary PWMs, we computed the
positional distribution of the TF’s novel PWMs relative to its
canonical PWM (Dataset S6). A PWM with a short distance to
the canonical PWM might be bound by another DBD of the
same TF if it has multiple DBDs, that is, it can be a secondary
PWM (SI Appendix, Fig. S3), while a novel PWM with a long

distance to the canonical PWM might be bound by a TF with an
unknown PWM.
In summary, among the 336 human TFs studied (not including

the 18 TFs for which the PWMs inferred were uncertain), 42
showed cobinding, 84 showed tethered binding, 75 showed both
cobinding and tethered binding, and 135 showed no interaction
with other TFs (Dataset S5). In addition, we found that 37
(∼26%) of the 142 cobinding pairs and 33 (∼18%) of the 186
tethered binding pairs (Dataset S5) have protein–protein inter-
action data in BioGRID (15). Note that lack of BioGRID data
could be due to either incompleteness of the database or lack of
interaction.

PWMs with a Core Motif. We obtained canonical PWMs for 267
human TFs and 32 mouse TFs in 37 TF families; for simplicity,
here “canonical” motifs include “candidate canonical” motifs.
We define a motif (PWM) as a core motif of a TF family if it is
shared (cos ≥ 0.8) by at least three canonical PWMs of the TF
family. To find a core motif for a TF family, we clustered similar
PWMs (cos ≥ 0.8) into groups. For each group with three or
more members the core motif (PWM) was then constructed
using the rules described in Methods, representing the consensus
of the PWMs of the group. Among the 37 TF families studied,
only 13 families have one or more groups with three or more
PWMs available and thus have one or more core motifs (SI
Appendix, Fig. S4). For example, for the 30 bHLH TFs studied,
19 share a core motif, 7 share another, and the remaining 4 TFs
share none. For these 13 TF families, bHLH, bZIP, C2H2, and
HMG/Sox have more than one core motif, implying that each of
these TF families can be divided into TF subfamilies. In partic-
ular, bHLH and bZIP TFs form a homo/heterodimer that binds
to palindromic sequences, e.g., core1 (E-box: CACGTG) and core2
(CAGCTG) of bHLH core motifs. The other nine families (E2F,
ETS, Forkhead, GATA, Nuclear receptor, MADS box, SMAD,
IRF, and Unknown) each has only one core motif. These core
motifs are shown in our database.

Fig. 2. Cooccurrence of PWMs between pairs of TF families. Each network is generated by Cytoscape (35). Each node is a TF. Hub TFs (degree >5) and bridge
TFs between two hubs are highlighted in blue. For instance, TAL1 cobinds with GATA1, which cobinds with four TFs, including NR2F1, NR2F6, ZEB2, and
HMBOX1. (A) Identified cobinding TF pairs. (B) Identified tethered binding TF pairs.
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Spatial Distribution of TFBSs. It is useful to know not only a TF’s
motif(s), but also the locations of its potential binding sites
(TFBSs) in the genome. To generate a list of candidate TFBSs,
we used FIMO to locate significant matches (P < 0.0001) for
each TF’s canonical PWM within called peak regions across the
human genome (all biosamples, not limited to the top 500 peaks;
Methods). As a resource for future research, bedGraph and GFF
format files are provided with the locations of these candidate
TFBSs (Dataset S7), which can be displayed using a custom track
in the UCSC Genome Browser. These data can be used to study
the variation of TF binding among experiments (cell lines or
tissues).
For a TF with only one experiment, we simply recorded the

location of each PWM mapping to a peak region in the genome.
For a TF with multiple experiments in the ENCODE project, we
grouped the candidate TFBSs into clusters by concatenating
overlapping appearances (≥1 bp overlap). The percentages of
candidate TFBSs occurring in peak clusters are shown in Fig. 3.
To investigate variation in TFBSs among different samples of

the same TF, we analyzed six TFs with the most abundant ex-
periments in ENCODE (Table 1), where experiments utilizing
the same biosample were merged and processed using our ranking
method. For five of the six TFs, we found that ∼70% of the mapped
TFBSs overlapped the same sites in at least two biosamples, while
∼30% of the sites were unique to one sample. However, about half
of the unique sites were in intergenic regions. One exception is
CTCF, for which ∼70% of candidate TFBSs occur in either inter-
genic or promoter regions, in accordance with its biological role of
mediating intra- and interchromosomal contacts (16).
In promoter regions, defined as −1 kb to +100 bp relative to

transcription start sites (TSSs), TFBSs have a sixfold or greater
higher probability density than elsewhere (Fig. 3), with a maxi-
mum at −50 bp relative to the TSS. However, because promoters
occupy only 1.2% of the human genome while intergenic regions
and introns occupy 54% and 42%, only 12% of TFBSs are in
promoters while 30% and 42% of TFBSs are in the intergenic
regions and introns, respectively. Thus, both intergenic regions
and introns contain many candidate TFBSs, likely because they
contain enhancers.
We found that some TFBSs form long, continuous clusters in

the genome wherein the motifs of one or more TFs directly
overlap. These TFBSs can be tandem TFBS repeats of the same
TF or combinations of different TFs, with length ≥500 bp (SI
Appendix, Fig. S5).

Inferring the Biological Role of a TF. Based on the spatial distri-
bution of TFBSs, we tested for the enrichment of PWM hits in
specific genomic features, including promoters, exons, introns,
and intergenic regions. To assess the positional preference of
TFBSs for any specific TF, we selected candidate TFBSs derived
from the most frequently used cell line, K562, and compared the
proportion of TFBSs to the proportion of DNase I hypersensitive
sites mapping to each genomic feature. DNase I sites were
chosen to normalize for positional preference because they serve
as a proxy for accessible chromatin; although they occupy only
4.4% of the human genome, 10% of them are in promoters (17),
even though promoters occupy only 1.2% of the genome (18).
Finally, we calculated the fold change (enrichment or depletion)
of TFBSs relative to DNase I sites for each TF. We found that
most TFs have predicted binding sites enriched in promoters,
such as the YY1, MYC, ATF1, and E2F1 families, while some
TFs have higher preference for intergenic regions, such as the
CTCF, JUN, JUNB, and NFE2 families (Fig. 4 A and B). A TF
that prefers promoters might be a core TF, while a TF that
prefers intergenic regions might bind distal enhancers. For ex-
ample, in the case of E2F1, >80% of binding sites are in pro-
moters, 50% of which overlap TSSs. As another example, CTCF
binds to border ranges, e.g., intergenic (34%) and intron (37%)

regions, and is known to mediate long-range chromatin looping
in promoter-distal regions. The binding preferences of the TFs
are given in Dataset S8.
For TFs that prefer to bind intergenic regions, we also com-

pared their TFBSs with known enhancer data from ENCODE
(18) and FANTOM (19, 20). The enhancer data in ENCODE
included four types of signatures: promoter-like signatures (PLSs),
proximal enhancer-like signatures (pELSs), distal enhancer-like
signatures (dELSs), and CTCF-only elements. The enhancers
from FANTOM have 34.6% regions that overlap pELSs/dELSs in
ENCODE. We found that the promoter-enriched TFs, such as
YY1/YY2, ATF1, and E2F1, also have greater motif enrichment in
PLSs; that the motifs of JUN, JUNB, and NFE2 are enriched in
dELSs and in enhancer regions in FANTOM; and that KLF16 and
ZNF654 tend to be associated with CTCF-only elements (Fig. 4C).

Comparison between Human and Mouse TFs. We found 25 TFs
studied in both human and mouse (SI Appendix, Table S1). The
sequence identity between orthologous human and mouse DBDs
is ≥0.98 with two exceptions: 0.90 for MYC and 0.86 for
NANOG. Similarly, the cos value between human and mouse
PWMs is ≥0.94 with three exceptions: 0.87 for TCF3, 0.91 for
TCF12, and 0.63 for NANOG. Thus, the canonical PWMs are
generally well-conserved between human and mouse lineages. As
the NANOG PWM has not been well conserved between human
and mouse, the NANOG TF will not be included in the following
discussion.
To infer the biological role of mouse TFs, we tested the en-

richment of their TFBSs in five sets of enhancer-like regions as
we did for human TFs (see Methods). The fold changes of the
above 24 mouse TFs are significantly correlated with the fold
changes of the 24 human TFs in dELSs (PCC = 0.78, P = 7.6 ×
10−6), enhancers of FANTOM (PCC = 0.80, P = 2.3 × 10−6), and
pELSs (PCC = 0. 72, P = 8.6 × 10−5). The correlations in PLSs
and CTCF-only regions are both only PCC = ∼0.53 (P = 8.4 ×
10−3), likely because most of the 24 TFs are not promoter- or
CTCF-associated.

Database. We have constructed a database called “dbTFBS”
(https://as0201821.github.io/dbTFBS/) to store the results of this
study. The TFs studied are divided into TF families and each TF is
given an entry. The first column shows the top PWM inferred for the
TF; more than one entry is given if there are different top PWMs
inferred from different experiments. The top PWM for an entry is
compared with those from other studies and databases if available.
Cooccurring motifs are classified into cobinding and tethered bind-
ing. The PWMs inferred for each experiment are also accessible.

Discussion
Computational Pipeline. Our computational pipeline for analyzing
ChIP-seq data (SI Appendix, Fig. S1) is a combination of new and
existing methods (9, 21–23). It has three key features. First, when
merging reads from two replicates of an experiment, it requires
both replicates to have one or more PWMs supported by >100
peaks in addition to the condition of IDR >1.3. The additional
requirement is to ensure sufficient motif enrichment for infer-
ring biologically meaningful PWMs. Second, rather than simply
choosing one experiment or naïvely merging all read data from
all available experiments, our procedure selects only the exper-
iments that have passed the above two criteria, uses a ranking
method to select the top 500 peaks from each selected experi-
ment, merges the selected peaks from all selected experiments to
form peak clusters, and finally selects the top 500 peak clusters to
infer PWMs. This selective inclusion of top-quality peaks or peak
clusters from all available experiments should increase PWM
quality. Third, at the final stage of selecting PWMs, we choose
the one supported by the largest number of peaks as the top
(primary) PWM, instead of choosing the PWM with the smallest
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E-value, because a long candidate motif may have a low E-value
even if supported by only a small number of peaks.

PWM Occurrences as the Criterion for Recovering Discarded
Experiments. Reproducibility of peaks across replicates has been
recommended as a criterion for judging the quality of an experiment

(11, 12, 23). For this purpose the IDR has been developed, with
IDR score >1.3 (IDR < 0.05) as a typical default threshold [i.e.,
−log10(0.05) = 1.3; https://github.com/IDR/idr-py]. However, in our
ChIP-seq analysis this criterion resulted in unnecessarily discarding a
large number of experiments. In contrast, we found that the number
of peaks that support a PWM is a highly effective criterion for

A

B C

Fig. 3. Spatial distribution of human TFBSs. (A) Histogram showing the positional distribution of TFBSs using canonical PWMs inferred from all TFs that
passed our criteria, within the region surrounding TSSs (±10 kb). The histogram is normalized and fitted by the Gaussian kernel density (line). The distribution
in the dashed box is enlarged in B. (B) Positional distribution of mapped TFBSs within ±2 kb relative to TSSs. The peak (maximum) probabilities are indicated
by arrows for all, cobinding, and tethered binding distributions, respectively. (C) The proportions of TFBSs occurring within eight different genomic features
in the human genome. The proportions sum to 1.0 for each category of binding (color).

Table 1. The distribution of mapped PWMs in intergenic and promoter regions

TF
TF

family
No. of
samples

Intergenic regions Promoter (1 kb) Promoter (500 bp)

No. of shared sites
(%)

No. of unique sites
(%)

No. of shared sites
(%)

No. of unique sites
(%)

No. of shared sites
(%)

No. of unique sites
(%)

SP1 C2H2 8 24,237 (51%) 23,016 (49%) 6,039 (70%) 2,554 (30%) 5,721 (72%) 2,207 (28%)
EGR1 C2H2 7 30,833 (42%) 42,035 (58%) 5,392 (66%) 2,763 (34%) 4,995 (68%) 2,310 (32%)
CTCF C2H2 11 72,585 (71%) 29,823 (29%) 4,611 (71%) 1,909 (29%) 3,644 (72%) 1,428 (28%)
MAX bHLH 20 32,713 (50%) 32,374 (50%) 3,416 (77%) 1,016 (23%) 2,614 (80%) 634 (20%)
MYC bHLH 20 12,789 (56%) 10,099 (44%) 2,187 (79%) 598 (21%) 1,745 (81%) 413 (19%)
JUND bZIP 17 56,444 (62%) 34,216 (38%) 1,767 (71%) 735 (29%) 1,164 (74%) 411 (26%)

The samples include cancer cell lines, primary cells, and tissues. Results are shown when defining the promoter of a gene as either the region 1 kb or 500 bp
upstream of the TSS.
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Fig. 4. Spatial distribution of TFBSs. (A) Fold enrichment of mapped TFBSs compared to DNase I sites in K562, shown for seven genomic features: promoter,
intergenic, intron, exon, 5′ UTR (untranslated region), 3′ UTR, and presence near transcription termination sites (TTSs, from −100 bp to +1kb), annotated by
HOMER. Fold change in comparison to DNase I hypersensitive sites is denoted by color, with red = positive and blue = negative. A positive fold change
indicates that a TF has a higher proportion of its TFBSs mapping to the given genomic feature than the proportion of DNase I sites which map to the feature.
The TF names and their accession numbers are provided, and some TFs whose TFBSs prefer promoters or intergenic regions are indicated on the right-hand
side. (B) Heat map showing spatial preferences of TFBSs in K562 using unannotated motifs. (C) Spatial preferences of TFBSs in five enhancer-like regions,
including four sets for ENCODE, i.e., PLSs, pELSs, dELSs, and CTCF-only elements, and one set of enhancers/enhancer-like regions from FANTOM5.
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judging data quality and the reliability of an inferred PWM. We
therefore proposed to use the number of PWM occurrences as a
criterion to allow data recovery, when an experiment for a TF is
discarded by a stringent IDR threshold. Specifically, in such cases,
the IDR score was disregarded and the experiment was recovered if
it yielded at least one PWM supported by >250 of the top 500 peaks
(i.e., more than half of the top 500 peaks contain the inferred
PWM).
To examine this criterion, let us consider the mouse data be-

cause the recovered PWMs can be compared to the corresponding
human data. There are four recovered cases (SI Appendix, Fig.
S6). First, for REST, a C2H2 TF, the data are initially discarded
because the IDR score between the two replicates is 0. However,
the top PWMs for the two replicates are supported by 417 and 387
peaks, respectively, and both PWMs show a high correlation with
the human PWM (cos = 0.90 and 0.93). Moreover, merging the
two replicates leads to a PWM that is supported by 418 peaks and
has a correlation of 0.97 with the human PWM. This PWM is
evidently credible. Second, for TCF3, a bHLH TF, the data are
discarded because IDR score = 1.11 (<1.3). However, the top
PWMs for the two replicates are supported by 495 and 499 peaks
and show a good correlation with the orthologous human PWM
(cos = 0.84 in both cases). Moreover, the top PWM for the
merged data is supported by 500 peaks. Thus, the data indeed
provide a reliable PWM. Third, for GATA2, a GATA TF, repli-
cate 1 has only 12 peaks, which is obviously of poor quality.
However, replicate 2 yields a PWM that is supported by 432 peaks
and shows a correlation of 0.92 with the human PWM. Thus, even
a single good-quality replicate can yield a reliable PWM. Fourth,
for POU5F1, a homeodomain TF, the IDR score between the two
replicates is 0. However, replicate 2 gives a PWM supported by
477 peaks. In this case, no ChIP-seq data are available for the
orthologous human TF. However, the top PWM from replicate 2
has a good correlation with human NANOG (cos = 0.83), which is
also a homeodomain TF. Thus, the PWM inferred from replicate
2 seems reliable. In addition to these four examples from the
mouse, we have used this approach to recover 108 discarded hu-
man TF experiments. Clearly, the number of PWM occurrences is
an effective criterion for judging the quality of an experiment and
can be used to recover unnecessarily discarded data. This criterion
also simplifies data analysis.
It is not clear why the IDR criterion sometimes does not

perform well. This issue deserves further study. We suggest that
the number of PWM occurrences is a better criterion for judging
whether to merge replicates: In the absence of IDR support,
merging is recommended only if it increases the number of peaks
that support the top PWM. However, although the number of
PWM occurrences alone seems to be sufficient to judge a rep-
licate’s quality, we still propose a two-stage approach for ana-
lyzing ChIP-seq data. PWMs inferred by a set of stringent rules
would be more credible than relying on a single criterion. The
second stage of analysis is needed only if the experiment is dis-
carded and no PWM is obtained.

Interactions between TFs.Among the 336 human TFs for which we
have obtained reliable PWMs, 201 showed cooccurring motifs,
implying frequent interactions between TFs. As only 142 TF
pairs showed cobinding while 186 pairs showed tethered binding,
tethered binding occurs substantially more frequently than cobind-
ing, as also observed by Wang et al. (9). It is interesting that 75 of
the above 336 human TFs were found to be involved in both
cobinding and tethered binding. Clearly, TF interaction is a complex
phenomenon and its biological basis requires further exploration.

Methods
Data Collection. The primary ChIP-seq data (FASTQ files) for each target TF
and its control(s) were downloaded from the ENCODE portal (8), including
both single- and paired-end reads (accessed 5 October 2019). For humans, of

the 1,639 TF genes cataloged by Lambert et al. (24), we identified 502 TFs
having ENCODE data, representing 49 families and 1,621 released-status
experiments (accessed 5 October 2019) (Dataset S9). The majority (61%) of
human TFs were represented by a single experiment and a single control,
each with two replicates. As CTCF was highly overrepresented in the EN-
CODE data (311 experiments), 129 experiments were somewhat randomly
selected to represent a diversity of biosamples. For the mouse, we identified
54 TFs having ENCODE data, representing 14 TF families and 193 released-
status experiments. To select controls, input DNA rather than immuno-
globulin G (IgG) was used because 1) the IgG “mock” ChIP controls often had
insufficient quantities of amplifiable DNA (22) and 2) the ENCODE ChIP-seq
“blacklist” regions were defined using input DNA (https://www.nature.com/
articles/s41598-019-45839-z) (25). Accession IDs and metadata are provided
for human and mouse in Datasets S9 and S10, respectively.

Read Quality-Control and Mapping. Read quality was assessed using FASTQC
before and after read processing. Read trimming was performed using
Trimmomatic (v0.39) (26) using the ILLUMINACLIP, LEADING:10, SLI-
DINGWINDOW:4:15, and MINLEN options. For MINLEN, 50 bp was used for
read lengths >50 bp, 30 bp for read types ≤50 bp and >30 bp, and 25 bp for
read types ≤30 bp. Trimmed reads not satisfying these length requirements
were discarded. The remaining reads were aligned to the latest version of
the human genome (GRCh38.p13) or mouse genome (GRCm38) using bow-
tie2 (v2.3.5) (27). A mappable rate of >70% was required for both replicates,
and this criterion was met by 95% of experiments.

Peak Calling. For each experiment, peaks in read depth were determined
using the callpeak function of MACS2 (v2.1.2) (28). Specifically, peaks were
identified by comparing mapped reads from an experiment (MACS2 pa-
rameters: -t replicate1 replicate2) to its control (-c replicate1 replicate2). Peak
summits, given by MACS2 summits.bed at 1-bp resolution, were called with
q-value <0.05 and extended by 100 bp in both directions (total length 200 bp).
Finally, sites overlapping blacklisted regions (including low-complexity repeti-
tive regions) (25) were removed.

Motif Discovery and Merging Replicates of an Experiment.Motif discovery was
performed using MEME-ChIP (v5.0.5) (29) to infer the top five PWMs from
the top 500 peaks (200 bp each, ±100 bp from the peak summit), similar to
the procedure of Wang et al. (9). An experiment was retained only if it had
two or more replicates passing the following two quality-control criteria.
First, each replicate was required to yield at least one PWM with occurrences
in >100 peaks. Second, the top 500 peaks from each pair of replicates were
required to have an IDR score, −log10(IDR), of ≥1.3 (11). Those experiments
that failed to meet both criteria were discarded. However, as described
below, if an experiment for a TF was discarded we allowed the data to be
recovered for analysis if they met an alternative set of criteria.

For TFs with a single experiment passing the above criteria, replicates were
merged, peak calling was repeated, and motif discovery was performed a
second time using the merged-replicate peaks. In such cases, the PWM with
the largest number of occurrences in called peaks was considered the top
(primary) PWM. We did not rank motifs by E-value, as done in Wang et al. (9)
and other studies, because we found that dubious (e.g., low-complexity)
motifs could attain significant E-values due to length alone. For TFs with
more than one experiment passing the above criteria, a procedure for
ranking and selecting read peaks was used to derive a single top PWM for
that TF (discussed in the next section).

Ranking and Selecting Read Peaks from Multiple Experiments. For those TFs
with more than one experiment passing our two quality-control criteria, we
obtained PWMs for each TF using a procedure modified from Satpathy et al.
(30). We first describe the procedure for the case of a single biosample (e.g.,
a cell line) with multiple experiments (SI Appendix, Fig. S7).

First, an experiment using the biosample was retained only if it passed the
above two quality-control criteria.

Second, for each retained experiment, theMACS2 scores (s =−log10[q-value])
of peaks were converted into score percentiles as rank(s)/total_no_peak, where
rank(s) refers to sorted MACS2 scores in descending order and total_no_peak is
the total number of called peaks. The highest score has the first rank and
is assigned a value of 100% (i.e., 1.00) under this scheme, while the lowest score
is constrained to a value of (100/total_no_peak)%.

Third, all peaks from all retained experiments were pooled and grouped
using the bedtools cluster tool (31), so that overlapping (≥1 bp at termini)
peak regions were merged into a single cluster. Each merged peak cluster
was assigned a score equal to the sum of the score percentiles of all peaks
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falling within that cluster, i.e., the rank-based scores from all experiments
with a peak in the region.

Fourth, the summation scores of peak clusters were sorted in descending
order to select the top 500 clusters. Within each cluster, we selected the peak
with the highest score percentile as the representative peak, and the rep-
resentative peaks from all 500 peak regions were used to infer the PWMs of
the TF.

Fifth and last, we chose the PWM supported by the largest number of the
representative peaks as the top PWM for the TF and also reported all other (at
most four additional) PWMs with >100 peaks.

We now consider multiple biosamples.
First, for each biosample we analyzed the experiments following the first

to third steps above to obtain the peak clusters and also the summation score
of each peak cluster.

Second, the peak clusters from all biosamples were merged and ranked
following the fourth step above to select new top 500 peak clusters to infer
the PWMs of the TF.

Obtaining PWMs for C2H2 TFs Using RCADE. For each C2H2 TF experiment
with ≥500 peaks, the sequences of the peaks and the protein sequence of
the TF were uploaded to the RCADE webserver (http://rcade.ccbr.utoronto.
ca/). Then, the computed PWMs were downloaded for comparison with
those inferred using our pipeline.

Recovering Discarded Data. If an experiment for a TF was discarded by our
selection criteria, we recovered datameeting the following alternative criteria:

1) Recover each experiment that has at least one replicate with at least one
PWM supported by >250 of the top 500 peaks.

2) For a recovered experiment, merge the replicates irrespective of the IDR
score, if merging increases the number of peaks supporting the top
PWM. Otherwise, select only the replicate that has the PWM supported
by the largest number of peaks.

3) Analyze each recovered experiment separately to infer PWMs.
4) Select the PWM supported by the largest number of peaks among all

recovered experiments as the top PWM of the TF under study.

Identifying Canonical and Cooccurring Motifs. The canonical motif of a TF
refers to the sequence-specific DNA motif that is directly bound by the TF. In
this study, a cooccurring motif refers to a situation in which a motif found in
the ChIP-seq data of one TF (TF1) is similar (cos ≥ 0.80) to the canonical motif
of a second TF (TF2) that belongs to another TF family. We propose the
following procedure to infer canonical and cooccurring motifs:

1) For each TF, determine groups of similar PWMs. Specifically, place all
passing PWMs inferred by the ChIP-seq experiments for the TF into
groups, where a PWM is added to a group if it is similar (cos ≥ 0.8) to
at least one PWM already present in the group. Repeat until no new
matches are found. Note that a PWM group may contain only one PWM.

2) If the TF has only one PWM group:

a) if any member of the PWM group is similar to a known canonical
motif of the same TF family, the group is considered to be a canonical
motif of the TF. (If no similar known canonical motif is found
[i.e., cos < 0.80], the condition is relaxed to “containing a submotif
that is similar to a submotif of a known canonical motif.”) The top
PWM of the group is considered the candidate canonical motif.

b) if no member of the PWM group is similar to any known canonical
motif documented in any database or literature, the group likely
represents a novel canonical motif of this or another TF. In our da-
tabase such motifs are indicated as “candidate canonical.”

c) if an inferred PWM is similar to a canonical PWM of a TF in another
TF family, it is considered a cooccurring motif.

3) If a TF has more than one PWM group, use the procedure in 2 to check if
any group is canonical and/or contains cooccurring PWMs.

Reason suggests that the top PWM inferred from a TF ChIP-seq experiment
is usually its canonical motif. However, in some cases the top PWM may be
the canonical motif of another TF that belongs to a different TF family. Such
a situation occurs when the TF under study binds to another TF rather than
to DNA, i.e., tethered binding (see below). In general, one TF has one ca-
nonical motif. However, in some cases, a TF (e.g., CTCF) may have more than
one canonical motif. This could be due to the existence of multiple inde-
pendent motifs for the TF, or to a single large motif that is inferred as two or
more PWMs during motif discovery.

Cobinding vs. Tethered Binding.Asmentioned earlier, the cooccurrence of two
motifs can be classified into 1) cobinding and 2) tethered binding (9). Wang
et al. (9) have described rules for distinguishing between the two types of
binding. Here we give the criteria in mathematical expressions. Let X =
fraction of peaks containing the canonical motif only, Y = fraction of peaks
containing only a noncanonical motif, and Z = fraction of peaks containing
both motifs. We propose the following rules for identifying cobinding and
tethered binding, where TF1 is the TF being assayed and TF2 belongs to a
separate family: Cobinding is indicated when the primary motif of TF1 is
equally or more frequent than that of TF2, due to each binding separate
DNA motifs, and tethered binding is indicated when the primary motif of
TF1 is inferred to be the primary motif of TF2, due to TF1 binding TF2 rather
than a DNA motif. More specifically, the rules are as follows:

1) If Y > X and Y > Z, infer tethered binding. The condition Y > X requires
that the noncanonical motif is the top (primary) motif, due to the TF
binding a second TF rather than a DNA motif (9). The condition Y > Z
requires that the noncanonical motif appears alone more often than
together with the canonical motif.

2) If Y < X or Y < Z, infer cobinding. The condition Y < X requires that the
canonical motif is the top motif and often occurs alone, while the con-
dition Y < Z requires that the noncanonical motif appears more often
with the canonical motif than alone.

Before computing X, Y, and Z, we used FIMO to check whether a motif
under study appears (hit with P = 1 × 10−4) in a peak region. However, as
MEME-ChIP may include motif sites with a P value higher than the default
value for FIMO, we increased the P value to the largest P value in the MEME-
ChIP data if we found no presence of the motif under study. To reduce the
chance of including randomly occurring motifs, the upper bound for the
relaxed P value was set to 5 × 10−4. As motif cooccurrence can differ by
biosample (cell line or tissue), we analyzed each biosample separately to
detect cooccurring motifs.

Inferring Core Motifs. As described above, we categorized TF families into
groups based on similar motifs. For each group with three or more members,
we inferred the coremotif as follows. First, themotifs within each groupwere
aligned. Second, the average frequency of each of the four nucleotides was
computed at each position to obtain the consensus motif (PWM) for the
group. Third, the consensus motif was end-trimmed if the terminal position’s
information content (IC) was <0.3 bits. This was repeated until the positions
at both ends had IC ≥0.3 bits. Each group was then regarded as a subfamily,
and each trimmed final motif was regarded as its core motif.

Spatial Distribution of TFBSs. To study the distribution of TFBSs in the genome,
we first mapped the inferred PWMs for each TF onto the genome as follows.
For a TF with a single experiment, we selected the canonical PWM of the TF
and mapped it to all the peak regions using FIMO. For a TF with multiple
experiments, we used the ranking method to infer PWMs and selected one
canonical PWM as described above, and then mapped it to all the peak re-
gions. If a PWM sequence was detected in a peak region (P < 0.0001), the
evolutionary conservation of the putative TFBS was assessed among pri-
mates. We calculated an average nucleotide conservation score using
PhastCons30, which included 27 primates and 3 mammals. We required the
score to be >50%, i.e., the PWM sequence was found in at least 14 species.
For a TF with multiple experiments in one or more biosamples, the peak
clusters identified by the ranking method were used instead. The distance of
a putative TFBS (center position) with respect to the closest TSS was calcu-
lated using bedtools and the genomic regions of the TFBSs were annotated
by annotatePeaks.pl in HOMER (32).

TFBSs separated by ≤100 bp were clustered using bedtools (cluster -d 100).
The density of TFBSs in a cluster per kilobase was calculated by (N/L)*1,000,
where N is the number of TFBSs in a cluster and L is the length of the cluster.

TFBSs of TFs Preferring Enhancer Regions. To infer the biological role of a TF
that prefers intergenic regions, we compared the putative TFBSs of a TF with
enhancers/enhancer-like regions from ENCODE and FANTOM5. For the EN-
CODE data, we downloaded the annotated regions from the database of
The Registry of Candidate cis-Regulatory Elements (18). The annotated re-
gions were divided into four categories: PLSs, pELSs, dELSs, and CTCF-only
elements. The other enhancer data were downloaded from FANTOM5 (19,
20). The two databases included enhancer-like data for human (hg38) and
mouse (mm10). Each set of the enhancer regions was compared with the set
of TFBSs of a TF to estimate the ratio of the observed number of overlapping
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peaks to the expected number for nonenhancer sites and P values using
mergePeak.pl in HOMER (32).

Motif Comparisons. To assess the similarity between two PWMs, the method
of k-mer frequency vector was used (33). Based on the authors’ suggestion,
the optimal k-mer length was set to 4 and the similarity measurement was
chosen to be the cosine angle. The PCC and cosine angle (cos) metrics were
both used to assess the similarity of two PWMs by Xu and Su (33). However,
PCC transforms observed values by centering the mean value, which may
result in negative values, while cos takes the absolute observed value
without any shift. The study found that cos outperformed PCC and also two
other metrics, Euclidean and Kullback–Leibler distances. Thus, we adopted
cos as the metric for comparing PWMs in this study. The PWM databases
compared in this study include Factorbook (34), SELEX in Cis-BP Build 2.00,
and JASPAR Core eighth version 2020.

Functional Motif Inference. The PWMs were mapped to ChIP-seq peak regions
using FIMO with P < 1 × 10−4. For analyzing promoter enrichment, the lo-
cations of PWM appearances were annotated by HOMER and the PWMs
with log2 ratio >2 in promoter regions (−1 kb to +100 bp related to TSS)
were classified as “promoter-enriched” PWMs.

In addition, we calculated the evolutionary conservation as described
in TFBS prediction and compared with the average score in intergenic
regions (score = 0.10). Motifs with odds ratios >2 were classified as
enriched.

Data and Computational PipelineAvailability.All data and scripts used to generate
results are freely available on GitHub at https://github.com/chpngyu/chip-seq-
pipeline and https://as0201821.github.io/dbTFBS/. The commands used for data
download are documented in the supplementary script at https://github.com/
chpngyu/chip-seq-pipeline. The commands for quality-control, read trimming,
read mapping, and peak calling are documented in https://github.com/chpngyu/
chip-seq-pipeline. The commands for calculating IDR scores between replicates
and cos values between PWMs are documented in https://github.com/chpngyu/
chip-seq-pipeline. All other study data are included in the article and/or
supporting information.
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